

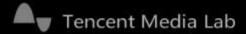
P.BBQCG study item overview

(generalities & passive tests)

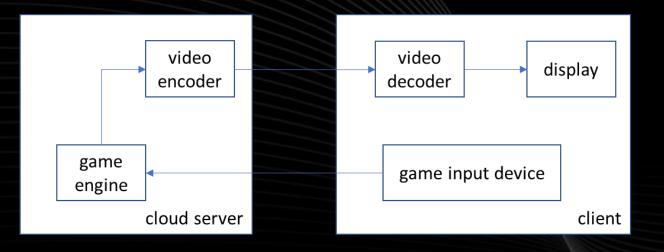
VQEG meeting – June 8th, 2021

Joel Jung

Generalities



P.BBQCG


parametric Bitstream-Based Quality assessment of Cloud Gaming services

- Study item of ITU-T SG12 / Q14
- Reference documents:
 - Draft Terms of Reference: SG12-C0530 Passive tests: SG12-C0529 Interactive tests: SG12-C0542
- Active organizations: Ericsson, Dolby, Tencent, TU Berlin, TU Ilmenau P.BBQCG still open to new participants Access to the database restricted to participants

Scope

Model to monitor and predict the quality of cloud gaming services

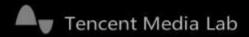
Bitstream-based model, considering information from:

- Header and payload of packets
- Game
- Network
- Control
- Context

Passive part

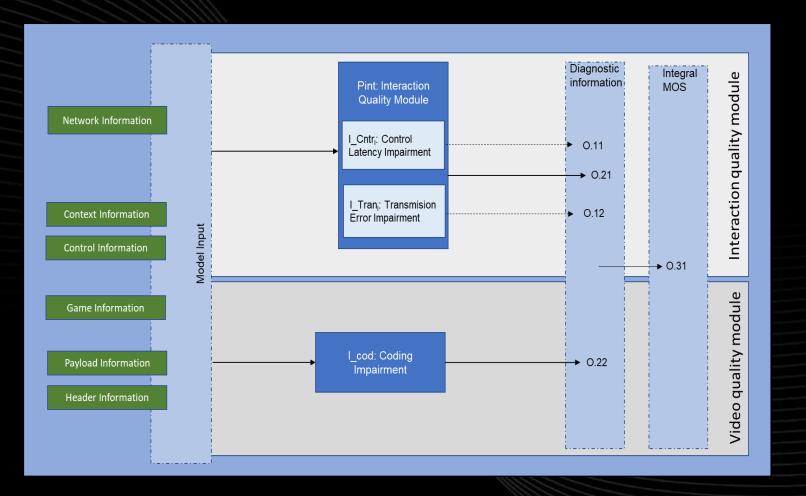
Active part

No reference model


No access to decoded pixels

Application area

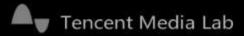
Video standards	H.264, H.265, AV1	
Video encoders	NVENC (H.264, H.265) – FFMPEG libaom (AV1)	
Encoder configuration	Low delay P, infinite GoP	
Encoder rate-control	CBR	
Resolutions	540p, 720p, 1080p, 2160p	
Frame rates	30fps, 60fps, 120fps	
Bitrates	300 kbps to 100 Mbps	
Bit depth	8 bits	
Display size and resolution	27" screen size, up to 4K resolution	
Sequence length	10s	
Pixel format	YUV 4.2.0	
	(passive tests)	


Description of the model

Building blocks:

2 main modules:

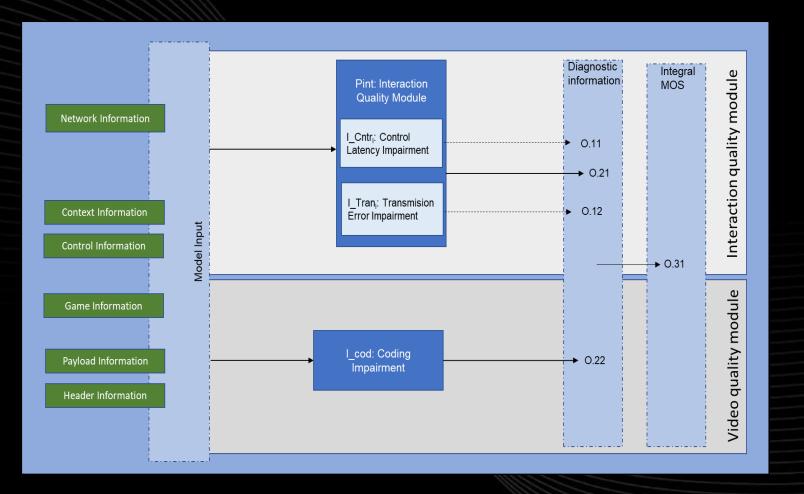
- interaction quality
- video quality



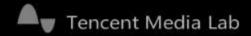
Description of the model

Model inputs:

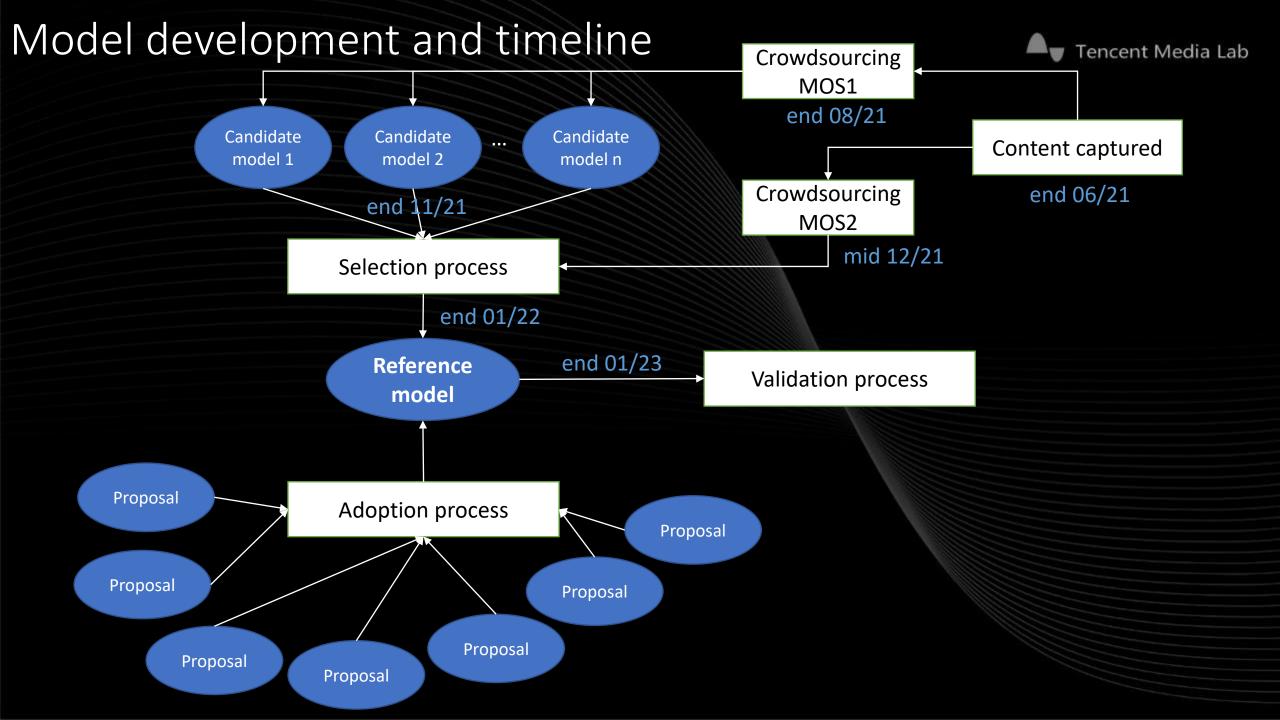
- Header information (codec and profile, bitrate, coding resolution, frame-rate, size and type of frames, GoP size and structure, VPS, SPS, PPS, ...)
- Payload information (quantization parameters, frame type, any other information that can be parsed from the bitstream)
- Game information (information on the game as known by the service provider)
- Network information (packet loss, jitter and network delay)
- Control information (actions performed by a player on the client device)
- Context information (device and player information)

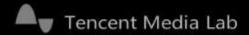


Description of the model

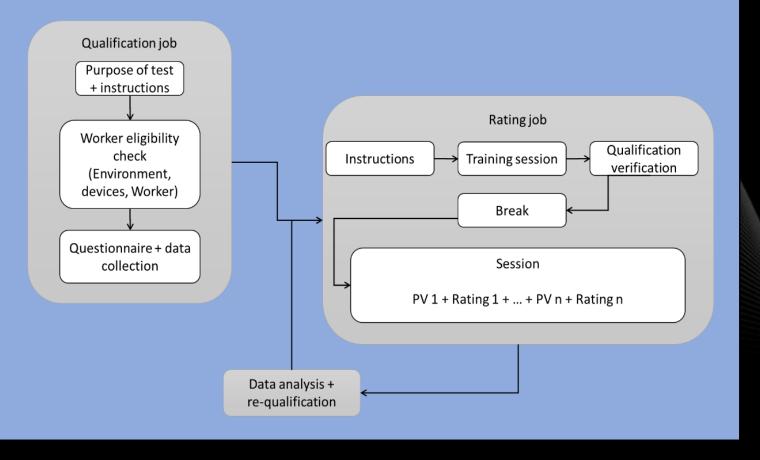

Aug Tencent Media Lab

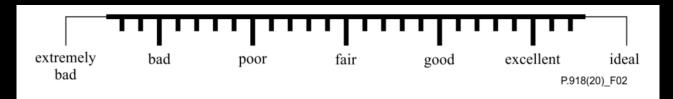
Model outputs:


- 0.31: estimated overall gaming QoE
- O.22: estimated video quality impairment factor due to video compression artifacts
- O.21: estimated interaction quality factor potentially degraded due to network latency and transmission errors
- O.11: estimated interaction quality factor degraded due to network latency
- O.12: estimated transmission impairment on player interaction due to packet loss


Operating modes and anchor models

Mode	Inputs information	Anchor
1	Header, game,	P.1203.1 mode 1
	context, network	post-processed by linear mapping only [P.1401]
2	Header, game, payload,	P.1204.3
	network, control, context	post-processed by linear mapping only [P.1401]




Timeline

Date	Task
End of June 21	Finalize crowd-sourcing document
End of June 21	Content captured (database 1 + 2) and shared among participants
End of July 21	Database processed (encoding, planning crowd-sourcing sessions,)
End of July 21	Crowdsourcing platform available
End of August 21	MOS available for database 1
End of Nov 21	Submission of candidate models
Mid of Dec 21	MOS available for database 2
End of Jan 22	Selection of reference model - start of collaborative approach
End of Jan 23	Final model available - Model verification
	Validation database available -> final performance
End of 23	End of the project

Crowd-sourcing approach

August Tencent Media Lab

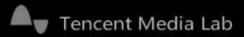
Inspired by P.808 P.809 P.CROWDV

Adapted to P.BBQCG context

P.CROWDG

Using an Absolute Category Rating (ACR) method P.910 with an extended 7-point continuous scale

Topics under discussion


- Operating modes
- Details of the collaborative approach
- Details of the crowd-sourcing
- Selection of the evaluation criteria RMSE, PLC Complexity

Thinking about:

- Considering gaming content characteristics: sudden drops of quality (rotations, explosions)
- Adding a indicator in addition to classical RMSE and PLC, assessing <u>only</u> the ability of the model to reflect sudden quality drops/increases

To know more and get involved

 Contact Joel Jung (Tencent) and Saman Zadtootaghaj (Dolby) joeljung@tencent.com saman.zadtootaghaj@dolby.com

- Reference documents: Draft Terms of Reference: SG12-C0530 Passive tests: SG12-C0529 Interactive tests: SG12-C0542
- P.BBQCG meetings every 3 weeks, Thursday, 2pm UTC
- Next meeting: June 16th